Accuracy Assessment for High-dimensional Linear Regression

Zijian Guo

Department of Statistics University of Pennsylvania Philadelphia, PA 19104

November 3, 2016

Joint work with Professor T. Tony Cai.

æ

High-dimensional linear regression

The linear regression model

$$y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}, \quad n \ll p,$$

where $\|\beta\|_0 \leq k$.

Motivating applications: Genomics study; Compressed sensing.

Z.Guo (UPenn)

- 4 同 6 4 日 6 4 日 6

High-dimensional linear regression

The linear regression model

$$y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}, \quad n \ll p,$$

where $\|\beta\|_0 \leq k$.

Motivating applications: Genomics study; Compressed sensing.

Methods: Basis Pursuit (Chen & Donoho, 1994), Lasso (Tibshirani, 1996), SCAD (Fan & Li, 2001), Dantzig Selector (Candès & Tao, 2007), square-root Lasso (Belloni, et. al., 2011) and scaled Lasso (Sun & Zhang, 2010).

Not enough to just provide a good estimator.

(日) (周) (三) (三)

Not enough to just provide a good estimator. Need to know the accuracy of the estimator.

A 🕨

Not enough to just provide a good estimator. Need to know the accuracy of the estimator.

Accuracy assessment

- Margin of error \rightarrow inference for binomial proportion.
- Width of confidence interval → inference for one-dimensional parameter.
- Stein's Unbiased Risk Estimate \rightarrow empirical selection of tuning parameter.

Not enough to just provide a good estimator. Need to know the accuracy of the estimator.

Accuracy assessment

- Margin of error \rightarrow inference for binomial proportion.
- Width of confidence interval \rightarrow inference for one-dimensional parameter.
- Stein's Unbiased Risk Estimate \rightarrow empirical selection of tuning parameter.
- A doctor needs to know the accuracy of reconstructed image based on MRI. (Janson et. al., 2015)
- Choose the best estimator among the proposed estimators.

How to assess the accuracy of these proposed estimators?

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016

3

▲ 同 ▶ → 三 ▶

4 / 18

How to assess the accuracy of these proposed estimators?

• Confidence intervals for the accuracy $\|\widehat{\beta} - \beta\|_2^2$.

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016 4 / 18

- 31

- 4 同 6 4 日 6 4 日 6

How to assess the accuracy of these proposed estimators?

- Confidence intervals for the accuracy $\|\widehat{\beta} \beta\|_2^2$.
- **2** Is it possible to construct confidence intervals for $\|\widehat{\beta} \beta\|_2^2$
 - Minimax rate-optimal
 - Adaptive to the sparsity.

Lasso, Dantzig Selector and scaled Lasso satisfy, for β being sparse,

$$\mathbb{P}\left(\|\widehat{\beta} - \beta\|_2^2 \le C \frac{\|\beta\|_0 \log p}{n}\right) \ge 1 - o(1). \tag{1}$$

See Candès and Tao (2007); Bickel, Ritov and Tsybakov(2009); Sun and Zhang (2010).

< 回 ト < 三 ト < 三 ト

Lasso, Dantzig Selector and scaled Lasso satisfy, for β being sparse,

$$\mathbb{P}\left(\|\widehat{\beta} - \beta\|_2^2 \le C \frac{\|\beta\|_0 \log p}{n}\right) \ge 1 - o(1). \tag{1}$$

See Candès and Tao (2007); Bickel, Ritov and Tsybakov(2009); Sun and Zhang (2010).

Adaptive to sparsity!

Z.Guo (UPenn)

< 回 ト < 三 ト < 三 ト

Lasso, Dantzig Selector and scaled Lasso satisfy, for β being sparse,

$$\mathbb{P}\left(\|\widehat{\beta}-\beta\|_{2}^{2} \leq C \frac{\|\beta\|_{0}\log p}{n}\right) \geq 1-o(1).$$
(1)

See Candès and Tao (2007); Bickel, Ritov and Tsybakov(2009); Sun and Zhang (2010).

Adaptive to sparsity!

Focus on adaptive and rate-optimal estimators satisfying (1).

- 4 目 ト - 4 日 ト - 4 日 ト

Lasso, Dantzig Selector and scaled Lasso satisfy, for β being sparse,

$$\mathbb{P}\left(\|\widehat{\beta}-\beta\|_{2}^{2} \leq C\frac{\|\beta\|_{0}\log p}{n}\right) \geq 1-o(1).$$
(1)

See Candès and Tao (2007); Bickel, Ritov and Tsybakov(2009); Sun and Zhang (2010).

Adaptive to sparsity!

Focus on adaptive and rate-optimal estimators satisfying (1).

Let $\hat{\beta}^L$ and $\hat{\beta}^{SL}$ denote the Lasso or scaled Lasso estimator with a proper chosen tuning parameter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Two parameter spaces

Recall the high-dimensional linear model with random design,

$$y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + \epsilon_{n \times 1}, \quad \epsilon \sim N_n(0, \sigma^2 \mathbf{I}).$$

where $X_{i} \stackrel{iid}{\sim} N(0, \Sigma)$ and X_{i} and ϵ are independent.

- 3

Two parameter spaces

Recall the high-dimensional linear model with random design,

$$y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + \epsilon_{n \times 1}, \quad \epsilon \sim N_n(0, \sigma^2 \mathbf{I}).$$

where X_i . $\stackrel{iid}{\sim} N(0, \Sigma)$ and X_i . and ϵ are independent. Two parameter spaces for (β, Σ, σ)

• Known
$$\Sigma = I$$
 and $\sigma = \sigma_0$

$$\Theta_0(k) = \{(\beta, \mathrm{I}, \sigma_0) : \|\beta\|_0 \le k\}.$$

2 Unknown Σ and σ

$$\Theta(k) = \left\{ (\beta, \Sigma, \sigma) : \|\beta\|_0 \le k, \ \frac{1}{M_1} \le \lambda_{\min}\left(\Sigma\right) \le \lambda_{\max}\left(\Sigma\right) \le M_1, \ 0 < \sigma \le M_2 \right\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Two levels of sparsity $k_1 \leq k_2$

- $\|\beta\|_0 = k_1$ precise knowledge of sparsity.
- $\|\beta\|_0 \le k_2$ rough knowledge of sparsity.

Two levels of sparsity $k_1 \leq k_2$

- $\|\beta\|_0 = k_1$ precise knowledge of sparsity.
- $\|\beta\|_0 \le k_2$ rough knowledge of sparsity.

Adaptive estimation of β

- Implementation does not require prior knowledge of k_1 .
- The convergence rate is $k_1 \log p/n$.

Two levels of sparsity $k_1 \leq k_2$

- $\|\beta\|_0 = k_1$ precise knowledge of sparsity.
- $\|\beta\|_0 \le k_2$ rough knowledge of sparsity.

Adaptive estimation of β

- Implementation does not require prior knowledge of k_1 .
- The convergence rate is $k_1 \log p/n$.

Two aspects of confidence intervals

- Coverage: Guaranteed coverage probability.
- Precision: As short as possible.

(4回) (三) (三) (三) (0) (0)

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$

What if we only know k_2 ?

- Coverage: Guaranteed coverage probability over $\Theta(k_2)$.
- Precision: Evaluate the length over $\Theta(k_1) \subset \Theta(k_2)$.

- 31

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$

What if we only know k_2 ?

- Coverage: Guaranteed coverage probability over $\Theta(k_2)$.
- Precision: Evaluate the length over $\Theta(k_1) \subset \Theta(k_2)$.

Define benchmark for adaptivity between $\Theta(k_1) \subset \Theta(k_2)$ as

$$\mathbf{L}_{\alpha}^{*}\left(\Theta(k_{1}),\Theta(k_{2}),\widehat{\beta}\right) = \inf_{\substack{\mathrm{CI} \text{ has guaranted}\\ \mathrm{coverage over }\Theta(k_{2})} \sup_{\theta\in\Theta(k_{1})} \mathbf{E}_{\theta}\mathbf{L}\left(\mathrm{CI}\right)$$

- 31

イロト イポト イヨト イヨト

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$

What if we only know k_2 ?

- Coverage: Guaranteed coverage probability over $\Theta(k_2)$.
- Precision: Evaluate the length over $\Theta(k_1) \subset \Theta(k_2)$.

Define benchmark for adaptivity between $\Theta(k_1) \subset \Theta(k_2)$ as

$$\mathbf{L}_{\alpha}^{*}\left(\Theta(k_{1}),\Theta(k_{2}),\widehat{\beta}\right) = \inf_{\substack{\text{CI has guaranteed}\\\text{coverage over }\Theta(k_{2})} \sup_{\theta\in\Theta(k_{1})} \mathbf{E}_{\theta}\mathbf{L}\left(\text{CI}\right)$$

Define benchmark for minimaxity as

$$\mathsf{L}^{*}_{\alpha}\left(\Theta(k_{1}),\widehat{\beta}\right) = \inf_{\substack{\mathrm{CI} \text{ has guaranteed} \\ \text{coverage over } \Theta(k_{1})}} \sup_{\theta \in \Theta(k_{1})} \mathsf{E}_{\theta}\mathsf{L}\left(\mathrm{CI}\right).$$

8 / 18

< 回 > < 三 > < 三 >

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016

(人間) トイヨト イヨト

3

9 / 18

Impossibility of adaptivity

$$\mathbf{L}_{\alpha}^{*}\left(\Theta(k_{1}),\Theta(k_{2}),\widehat{\beta}\right)\gg\mathbf{L}_{\alpha}^{*}\left(\Theta(k_{1}),\widehat{\beta}\right).$$
(2)

- 4 回 ト - 4 回 ト

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$ over $\Theta_0(k)$

Theorem

For any adaptive and rate-optimal estimator $\hat{\beta}$, then there is some constant c > 0 such that

$$\mathbf{L}_{\alpha}^{*}\left(\Theta_{0}(k_{1}),\widehat{\beta}\right) \geq c \min\left\{\frac{k_{1}\log p}{n},\frac{1}{\sqrt{n}}\right\}\sigma_{0}^{2}.$$

$$\mathbf{L}_{\alpha}^{*}\left(\Theta_{0}(k_{1}),\Theta_{0}(k_{2}),\widehat{\beta}\right) \geq c \min\left\{\frac{k_{2}\log p}{n},\frac{1}{\sqrt{n}}\right\}\sigma_{0}^{2}.$$
(3)

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$ over $\Theta_0(k)$

Theorem

For any adaptive and rate-optimal estimator $\hat{\beta}$, then there is some constant c > 0 such that

$$\mathbf{L}_{\alpha}^{*}\left(\Theta_{0}(k_{1}),\widehat{\beta}\right) \geq c \min\left\{\frac{k_{1}\log p}{n},\frac{1}{\sqrt{n}}\right\}\sigma_{0}^{2}.$$

$$(3)$$

$$\overset{*}{\alpha}\left(\Theta_{0}(k_{1}),\Theta_{0}(k_{2}),\widehat{\beta}\right) \geq c \min\left\{\frac{k_{2}\log p}{n},\frac{1}{\sqrt{n}}\right\}\sigma_{0}^{2}.$$

$$(4)$$

The lower bounds can be achieved for confidence intervals for $\|\widehat{\beta}^L - \beta\|_2^2$.

Impossible to construct adaptive CI for $\|\widehat{\beta}^L - \beta\|_2^2$.

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016

イロト 不得 トイヨト イヨト 二日

11 / 18

Case 2: $k_1 \lesssim \frac{\sqrt{n}}{\log p} \ll k_2 \lesssim \frac{n}{\log p}$

Impossible to construct adaptive CI for $\|\widehat{\beta}^L - \beta\|_2^2$.

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016

12 / 18

- 3

Case 3: $\frac{\sqrt{n}}{\log p} \ll k_1 \le k_2 \lesssim \frac{n}{\log p}$

Possible to construct adaptive CI for $\|\widehat{\beta}^L - \beta\|_2^2$.

- 3

13 / 18

イロト イポト イヨト イヨト

Confidence intervals for $\|\widehat{\beta}^L - \beta\|_2^2$ over $\Theta_0(k)$

- 3

イロト イポト イヨト イヨト

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$ over $\Theta(k)$

Theorem

For any adaptive and rate-optimal estimator $\hat{\beta}$, then there is some constant c > 0 such that

$$\mathbf{L}_{\alpha}^{*}\left(\Theta\left(k_{1}\right),\widehat{\beta}\right)\geq ck_{1}\frac{\log p}{n};$$
(5)

and

$$\mathsf{L}^*_{lpha}\left(\Theta\left(k_1
ight),\Theta\left(k_2
ight),\widehat{eta}
ight)\geq ck_2rac{\log p}{n}.$$

(6

Confidence intervals for $\|\widehat{\beta} - \beta\|_2^2$ over $\Theta(k)$

Theorem

For any adaptive and rate-optimal estimator $\hat{\beta}$, then there is some constant c > 0 such that

$$\mathbf{L}_{\alpha}^{*}\left(\Theta\left(k_{1}\right),\widehat{\beta}\right)\geq ck_{1}\frac{\log p}{n};$$
(5)

and

$$\mathbf{L}_{\alpha}^{*}\left(\Theta\left(k_{1}\right),\Theta\left(k_{2}\right),\widehat{\beta}\right)\geq ck_{2}\frac{\log p}{n}.$$
(6)

The lower bounds can be achieved for confidence intervals for $\|\widehat{\beta}^{SL} - \beta\|_2^2$.

Confidence intervals for $\|\widehat{\beta}^{SL} - \beta\|_2^2$ over $\Theta(k)$

Figure:
$$\mathbf{L}^*_{\alpha}\left(\Theta_0(k_1), \widehat{\beta}^{SL}\right)$$
 v.s. $\mathbf{L}^*_{\alpha}\left(\Theta_0(k_1), \Theta_0(k_2), \widehat{\beta}^{SL}\right)$

Impossible to construct adaptive CI for $\|\widehat{\beta}^{SL} - \beta\|_2^2$.

Z.Guo (UPenn)

(日) (周) (三) (三)

- 31

Confidence intervals for $\|\widehat{eta} - eta\|_q^2$ with $1 \leq q < 2$

() There is fundamental difference between q = 2 and $1 \le q < 2$.

Z.Guo (UPenn)

Accuracy Assessment high-dim regression

November 3, 2016

17 / 18

Confidence intervals for $\|\widehat{eta}-eta\|_q^2$ with $1\leq q<2$

O There is fundamental difference between q = 2 and 1 ≤ q < 2.
O adaptive regime for both Θ₀(k) and Θ(k).

- 3

Conclusion and Discussion

- For any adaptive rate-optimal estimator, accuracy assessment is hard in high dimension linear regression.
- Solution Adaptive confidence interval for the accuracy $\|\widehat{\beta} \beta\|_2^2$ is only possible
 - With the prior information $\Sigma = I$ and $\sigma = \sigma_0$;
 - Over the regime $\frac{\sqrt{n}}{\log p} \le k \le \frac{n}{\log p}$.

Conclusion and Discussion

- For any adaptive rate-optimal estimator, accuracy assessment is hard in high dimension linear regression.
- Solution Adaptive confidence interval for the accuracy $\|\widehat{\beta} \beta\|_2^2$ is only possible
 - With the prior information $\Sigma = I$ and $\sigma = \sigma_0$;
 - Over the regime $\frac{\sqrt{n}}{\log p} \le k \le \frac{n}{\log p}$.
- Significant differences between
 - $\|\widehat{\beta} \beta\|_2^2$ and the $\|\widehat{\beta} \beta\|_q^2$ loss with $1 \le q < 2$;
 - the two parameter spaces $\Theta(k)$ and $\Theta_0(k)$.
- In the paper, we have developed a general tool for establishing minimax lower bounds for accuracy assessment.

Conclusion and Discussion

- For any adaptive rate-optimal estimator, accuracy assessment is hard in high dimension linear regression.
- Solution Adaptive confidence interval for the accuracy $\|\widehat{\beta} \beta\|_2^2$ is only possible
 - With the prior information $\Sigma = I$ and $\sigma = \sigma_0$;
 - Over the regime $\frac{\sqrt{n}}{\log p} \le k \le \frac{n}{\log p}$.
- Significant differences between
 - $\|\widehat{\beta} \beta\|_2^2$ and the $\|\widehat{\beta} \beta\|_q^2$ loss with $1 \le q < 2$;
 - the two parameter spaces $\Theta(k)$ and $\Theta_0(k)$.
- In the paper, we have developed a general tool for establishing minimax lower bounds for accuracy assessment.
- It is interesting to investigate the estimation of loss for more general estimators that are not adaptive and rate-optimal estimators.