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High-dimensional linear regression

The linear regression model

yn×1 = Xn×pβp×1 + εn×1, n� p,

where ‖β‖0 ≤ k.

Motivating applications: Genomics study; Compressed sensing.

Methods: Basis Pursuit (Chen & Donoho, 1994), Lasso (Tibshirani, 1996),
SCAD (Fan & Li, 2001), Dantzig Selector (Candès & Tao, 2007),
square-root Lasso (Belloni, et. al., 2011) and scaled Lasso (Sun & Zhang,
2010).
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Accuracy Assessment

Not enough to just provide a good estimator.

Need to know the accuracy of the estimator.

Accuracy assessment

Margin of error → inference for binomial proportion.

Width of confidence interval → inference for one-dimensional
parameter.

Stein’s Unbiased Risk Estimate → empirical selection of tuning
parameter.

A doctor needs to know the accuracy of reconstructed image based
on MRI. (Janson et. al., 2015)

Choose the best estimator among the proposed estimators.
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Research Problem

How to assess the accuracy of these proposed
estimators?

1 Confidence intervals for the accuracy ‖β̂ − β‖2
2.

2 Is it possible to construct confidence intervals for ‖β̂ − β‖2
2

Minimax rate-optimal
Adaptive to the sparsity.
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Adaptive and rate-optimal estimators

Lasso, Dantzig Selector and scaled Lasso satisfy, for β being sparse,

P
(
‖β̂ − β‖2

2 ≤ C
‖β‖0 log p

n

)
≥ 1− o(1). (1)

See Candès and Tao (2007); Bickel, Ritov and Tsybakov(2009); Sun and
Zhang (2010).

Adaptive to sparsity!

Focus on adaptive and rate-optimal estimators satisfying (1).

Let β̂L and β̂SL denote the Lasso or scaled Lasso estimator with a proper
chosen tuning parameter.
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Two parameter spaces

Recall the high-dimensional linear model with random design,

yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn(0, σ2I).

where Xi ·
iid∼ N (0,Σ) and Xi · and ε are independent.

Two parameter spaces for (β,Σ, σ)

1 Known Σ = I and σ = σ0

Θ0(k) = {(β, I, σ0) : ‖β‖0 ≤ k} .

2 Unknown Σ and σ

Θ(k) =

{
(β,Σ, σ) : ‖β‖0 ≤ k,

1

M1
≤ λmin (Σ) ≤ λmax (Σ) ≤ M1, 0 < σ ≤ M2

}
.
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Framework for minimaxity and adaptivity

Two levels of sparsity k1 ≤ k2

‖β‖0 = k1 – precise knowledge of sparsity.

‖β‖0 ≤ k2 – rough knowledge of sparsity.

Adaptive estimation of β

Implementation does not require prior knowledge of k1.

The convergence rate is k1 log p/n.

Two aspects of confidence intervals

Coverage: Guaranteed coverage probability.

Precision: As short as possible.
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Framework for minimaxity and adaptivity

Confidence intervals for ‖β̂ − β‖2
2

What if we only know k2?

Coverage: Guaranteed coverage probability over Θ(k2).

Precision: Evaluate the length over Θ(k1) ⊂ Θ(k2).

Define benchmark for adaptivity between Θ(k1) ⊂ Θ(k2) as

L∗α
(

Θ(k1),Θ(k2), β̂
)

= inf
CI has guaranteed

coverage over Θ(k2)

sup
θ∈Θ(k1)

EθL (CI) .

Define benchmark for minimaxity as

L∗α
(

Θ(k1), β̂
)

= inf
CI has guaranteed

coverage over Θ(k1)

sup
θ∈Θ(k1)

EθL (CI) .
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Framework for minimaxity and adaptivity

ΩΘ 𝑘1

Θ 𝑘2

𝐋𝛼
∗ (Θ 𝑘1 , Θ 𝑘2 ,  𝛽)

Θ 𝑘1

𝐋𝛼
∗ (Θ 𝑘1 ,  𝛽)

Impossibility of adaptivity

L∗
α

(
Θ(k1),Θ(k2), β̂

)
� L∗

α

(
Θ(k1), β̂

)
. (2)
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Confidence intervals for ‖β̂ − β‖2
2 over Θ0(k)

Theorem

For any adaptive and rate-optimal estimator β̂, then there is some
constant c > 0 such that

L∗α
(

Θ0(k1), β̂
)
≥ c min

{
k1 log p

n
,

1√
n

}
σ2

0 . (3)

L∗α
(

Θ0(k1),Θ0(k2), β̂
)
≥ c min

{
k2 log p

n
,

1√
n

}
σ2

0 . (4)

The lower bounds can be achieved for confidence intervals for ‖β̂L − β‖2
2.
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Case 1: k1 ≤ k2 .
√
n

log p

ΩΘ0 𝑘1

Θ0 𝑘2
𝑘1log 𝑝

𝑛

𝑘2log 𝑝

𝑛

Θ0 𝑘1

Ω

Ω

Θ0 𝑘1

Θ0 𝑘2
𝑘1log 𝑝

𝑛

1

𝑛

Θ0 𝑘1

Θ0 𝑘1

Θ0 𝑘2
1

𝑛

1

𝑛

Θ0 𝑘1

Figure: L∗α

(
Θ0(k1), β̂L

)
v.s. L∗α

(
Θ0(k1),Θ0(k2), β̂L

)

Impossible to construct adaptive CI for ‖β̂L − β‖2
2.
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Case 3:
√
n

log p � k1 ≤ k2 . n
log p
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Figure: L∗α

(
Θ0(k1), β̂L

)
v.s. L∗α

(
Θ0(k1),Θ0(k2), β̂L

)

Possible to construct adaptive CI for ‖β̂L − β‖2
2.
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Confidence intervals for ‖β̂L − β‖2
2 over Θ0(k)

1
n

k2
log p
n

0 k2 n log p k2 n log p

Not Adaptive Adaptive

Figure: Summary of L∗α

(
Θ0(k1),Θ0(k2), β̂L

)
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Confidence intervals for ‖β̂ − β‖2
2 over Θ(k)

Theorem

For any adaptive and rate-optimal estimator β̂, then there is some
constant c > 0 such that

L∗
α

(
Θ (k1) , β̂

)
≥ ck1

log p

n
; (5)

and

L∗
α

(
Θ (k1) ,Θ (k2) , β̂

)
≥ ck2

log p

n
. (6)

The lower bounds can be achieved for confidence intervals for ‖β̂SL − β‖2
2.

Z.Guo (UPenn) Accuracy Assessment high-dim regression November 3, 2016 15 / 18



Confidence intervals for ‖β̂ − β‖2
2 over Θ(k)

Theorem

For any adaptive and rate-optimal estimator β̂, then there is some
constant c > 0 such that

L∗
α

(
Θ (k1) , β̂

)
≥ ck1

log p

n
; (5)

and

L∗
α

(
Θ (k1) ,Θ (k2) , β̂

)
≥ ck2

log p

n
. (6)

The lower bounds can be achieved for confidence intervals for ‖β̂SL − β‖2
2.

Z.Guo (UPenn) Accuracy Assessment high-dim regression November 3, 2016 15 / 18



Confidence intervals for ‖β̂SL − β‖2
2 over Θ(k)

 

 

 

 

   

Figure: L∗α

(
Θ0(k1), β̂SL

)
v.s. L∗α

(
Θ0(k1),Θ0(k2), β̂SL

)

Impossible to construct adaptive CI for ‖β̂SL − β‖2
2.
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Confidence intervals for ‖β̂ − β‖2
q with 1 ≤ q < 2

1 There is fundamental difference between q = 2 and 1 ≤ q < 2.

2 No adaptive regime for both Θ0(k) and Θ(k).
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Conclusion and Discussion

1 For any adaptive rate-optimal estimator, accuracy assessment is hard
in high dimension linear regression.

2 Adaptive confidence interval for the accuracy ‖β̂ − β‖2
2 is only

possible

With the prior information Σ = I and σ = σ0;

Over the regime
√
n

log p ≤ k ≤ n
log p .

3 Significant differences between

‖β̂ − β‖2
2and the ‖β̂ − β‖2

q loss with 1 ≤ q < 2;
the two parameter spaces Θ(k) and Θ0(k).

4 In the paper, we have developed a general tool for establishing
minimax lower bounds for accuracy assessment.

5 It is interesting to investigate the estimation of loss for more general
estimators that are not adaptive and rate-optimal estimators.
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